skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kieffer, Christina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Switchgrass (Panicum virgatumL.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including −50%, −33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the meanPmaxof five precipitation treatments was 17.6 μmol CO2m−2 s−1, and the ambient treatment tended to have a higherPmax. The +33% treatment had the highestα, and the ambient treatment had lowerθandLCP, higherRd, and relatively lowerLSP. Furthermore, precipitation significantly influenced all model parameters of CO2response. The ambient treatment had the highestPmax, largestα, and lowestθ,Rd, and CO2compensation pointLCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity. 
    more » « less
  2. Long, Steve. (Ed.)
    Switchgrass (Panicum virgatum L.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2 remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including -50%, -33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2 concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2 concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2 response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2 response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the mean Pmax of five precipitation treatments was 17.6 μmol CO2 m-2s-1, and the ambient treatment tended to have a higher Pmax. The +33% treatment had the highest α, and the ambient treatment had lower θ and LCP, higher Rd, and relatively lower LSP. Furthermore, precipitation significantly influenced all model parameters of CO2 response. The ambient treatment had the highest Pmax, largest α, and lowest θ, Rd, and CO2 compensation point LCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity. 
    more » « less
  3. Switchgrass (SG) is considered a model bioenergy crop and a warm- season peren-nial grass (WSPG) that traditionally served as forage feedstock in the United States. To avoid the sole dependence on SG for bioenergy production, evaluation of other crops to diversify the pool of feedstock is needed. We conducted a 3- year field ex-periment evaluating eastern gamagrass (GG), another WSPG, as complementary feedstock to SG in one- and two- cut systems, with or without intercropping with crimson clover or hairy vetch, and under different nitrogen (N) application rates. Our results showed that GG generally produced lower biomass (by 29.5%), theoreti-cal ethanol potential (TEP, by 2.8%), and theoretical ethanol yield (TEY, by 32.9%) than corresponding SG under the same conditions. However, forage quality meas-ures, namely acid detergent fiber (ADF), crude protein (CP), and elements P, K, Ca, and Mg were significantly higher in GG than those in SG. Nitrogen fertilizer signifi-cantly enhanced biomass (by 1.54 Mg ha−1), lignin content (by 2.10 g kg−1), and TEY (787.12 L ha−1) in the WSPGs compared to unfertilized treatments. Intercropping with crimson clover or hairy vetch did not significantly increase biomass of the WSPGs, or TEP and TEY in unfertilized plots. This study demonstrated that GG can serve as a complementary crop to SG and could be used as a dual- purpose crop for bioenergy and forage feedstock in farmers' rotations. 
    more » « less